
Dr
.H

oo
k

–
an

 in
st

ru
m
en

ta
ti
on

 t
oo

l
Dr.Hook – an instrumentation tool

by Sami Saarinen
Mats Hamrud, Deborah Salmond & John Hague

@ECMWF, Reading, UK
(June 15, 2005 FMI)

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

2

What is Dr.Hook ?
A Fortran & C-callable instrumentation library to

Trap run-time problems
Gather performance profile info per subroutine

o Wall-clock or CPU-times
o Mflop/s & MIPS –rates (on some machines)
o Memory usage profiling (on some machines)
o Watchpoints for memory region(s) overwrites

The basic feature: keep track of the calling tree
For every MPI-task and OpenMP-thread
Upon error (when caught via Unix-signals) tries to
print the current active calling tree
The system specific traceback can also be printed

System independent with low overhead
Basic < 1%, with MFlop/s counters ~ 1% (Power4)

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

3

What is Dr.Hook ? (cont’d)

A traceback can also be printed at any time
accompanied with memory, CPU, paging, wall-clock
etc. info

Run-time profile information

At exit prints gprof-like flat profile report for
every instrumented routine per MPI-task

Each thread shown separately

Either wall-clock or CPU-time based

Mflop/s & MIPS-rates available

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

4

What is Dr.Hook ? (cont’d)

Run-time memory profile information
On some machines (like IBM Power-series) we
have intercepted Fortran90 ALLOCATE &
DEALLOCATE (and all C-routines in ODB) with
our own memory allocation routines to let
Dr.Hook to keep track of memory usage per
subroutine
A useful way to find out memory leaks

The latest feature is to watch arrays (or contiguous
pieces of memory) being accidentally overwritten

Finds the routine which does the overwrite
Checking is done by checking against 4-byte
CRC32 cryptographic key for each watch-region

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

5

Motivation of having Dr.Hook

Upon error IFS sometimes hangs and doesn’t print any
information about where the failure occurred

May print misleading traceback from a non-computational
thread, like (typical to nearly every Unix-system):

0: Signal received: SIGINT - Interrupt

0: Traceback:

0: Location 0x0000377c

0: Offset 0x00000868 in procedure pm_async_thread
0: Offset 0x000000a4 in procedure _pthread_body
0: --- End of call chain ---

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

6

Dr.Hook traceback

When Dr.Hook is enabled, the traceback is much more
informative, indented and up to date than system trbk

depends on program’s Dr.Hook instrumentation level

0:[myproc#1,tid#1,pid#90320]: Received signal#2 (SIGINT) ; Memory: 219145K …

0:[myproc#1,tid#1,pid#90320]: MASTER

0:[myproc#1,tid#1,pid#90320]: CNT0

0:[myproc#1,tid#1,pid#90320]: SU0YOMB

0:[myproc#1,tid#1,pid#90320]: SUPHY

0:[myproc#1,tid#1,pid#90320]: SUPHEC

0:[myproc#1,tid#1,pid#90320]: SUECRAD

0:[myproc#1,tid#1,pid#90320]: RRTM_KGB7

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

7

How to instrument a Fortran90 program ?

SUBROUTINE SUB
USE YOMHOOK, ONLY : LHOOK, DR_HOOK
IMPLICIT NONE

REAL(8) :: ZHOOK_HANDLE ! Must be a local (stack) variable

!– The very first statement in the subroutine
IF (LHOOK) CALL DR_HOOK(‘SUB’,0,ZHOOK_HANDLE)

!--- Body of the routine goes here ---

!– Just before RETURNing from the subroutine
IF (LHOOK) CALL DR_HOOK(‘SUB’,1,ZHOOK_HANDLE)

END SUBROUTINE SUB

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

8

How to instrument a C-program ?

#include “drhook.h” /* ifsaux/include/drhook.h” */
/* You normally still need a Fortran90 main program */
void subname()
{

{
DRHOOK_START(subname);

/* or
DRHOOK_START_BY_STRING(“subname”);
*/

/* Body of the routine goes here */

DRHOOK_END(0);
}

}

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

9

Dr.Hook profiling information

When Dr.Hook is enabled, it can also be asked to gather
wall-clock (or CPU-time) information about routines being
instrumented
Profile is printed at exit, one (text)file per MPI-task :

Profiling information for program='./MASTER' (# of routines=506):

Wall-time is 2.75 sec on proc#1 (2 procs, 3 threads)

% time cumul self total # of calls self total routine@<tid> [cluster:(id,size)]

(self) (sec) (sec) (sec) ms/call ms/call

15.59 0.43 0.43 0.43 7 61.17 61.17 OPDIS@1 [134,1]

12.11 0.76 0.33 0.33 64 5.20 5.20 POSNAM@1 [139,1]

3.21 0.85 0.09 0.09 3 29.42 29.42 PPOPEN@1 [148,1]

3.09 0.93 0.08 0.10 10916 0.01 0.01 *CUADJTQ@3 [28,3]

3.07 0.93 0.08 0.09 10479 0.01 0.01 CUADJTQ@1 [28,3]

3.04 0.93 0.08 0.09 10474 0.01 0.01 CUADJTQ@2 [28,3]

3.00 1.02 0.08 0.12 2 41.17 62.15 WROUTSPGB@1 [498,1]

2.80 1.09 0.08 0.08 1 76.82 81.32 SUSPECG@1 [421,1]

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

10

Dr.Hook profiling information (cont’d)

When Mflop/s counter is enabled, the following output can
be produced:

Profiling information for program='/fdb/eg7t/bin/ifsMASTER', myproc#1 (# of instrumented routines called = 859):

Instrumentation started : 20031201 171315

Instrumentation ended : 20031201 173631

Wall-time is 1247.54 sec on proc#1, 401 MFlops (ops#500104*10^6), 1358 MIPS (ops#1694634*10^6) (32 procs, 4 threads)

Thread#1: 1241.66 sec (99.53%), 124 MFlops (ops#153788*10^6), 605 MIPS (ops#751376*10^6)

Thread#2: 505.01 sec (40.48%), 228 MFlops (ops#115265*10^6), 622 MIPS (ops#314268*10^6)

Thread#3: 504.12 sec (40.41%), 229 MFlops (ops#115330*10^6), 626 MIPS (ops#315331*10^6)

Thread#4: 502.39 sec (40.27%), 230 MFlops (ops#115722*10^6), 624 MIPS (ops#313659*10^6)

% Time Cumul Self Total # of calls MIPS MFlops Div-% Routine@<tid> [Cluster:(id,size)]

(self) (sec) (sec) (sec)

1 10.23 127.564 127.564 170.783 8930 685 49 0.0 *CTXGETDB@1 [57,4]

2 5.35 194.311 66.747 98.825 7257296 807 251 0.2 *VEXP_@2 [843,4]

3 5.35 194.311 66.688 99.131 7290992 819 255 0.2 VEXP_@4 [843,4]

4 5.34 194.311 66.614 98.761 7298576 812 252 0.2 VEXP_@1 [843,4]

5 5.33 194.311 66.477 98.596 7295024 808 251 0.2 VEXP_@3 [843,4]

6 4.81 254.324 60.013 116.628 2773222 643 307 5.6 *CUADJTQ@2 [60,4]

7 4.80 254.324 59.925 116.691 2793808 639 305 5.6 CUADJTQ@1 [60,4]

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

11

Status of Dr.Hook with IFS (now CY29R2)

Dr.Hook resides in library libifsaux.a
o In standalone Dr.Hook and/or ODB installations in libdrhook.a

The CY28 was the first IFS-cycle, where the almost the
whole suite had been instrumented with Dr.Hook

o Instrumentation can be done automatically with Perl-script

In CY28R1 Dr.Hook had improved performance and due to
this low basic overhead, the calling tree-tracer was
switched ON by default on our operational environment

In CY28R2 had much cheaper Mflop/s-rate monitoring in
CY28R2+ we had much more calls instrumented

CY28R4 saw memory profiling & CY29R2 watch points

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

12

Dr.Hook environment variables

Enable Dr.Hook (call-tree/traceback only cheap)
DR_HOOK=1

Enable wall-clock time profiling information upon exit
DR_HOOK_OPT=prof
The profile will be written to files drhook.prof.<1..nproc>

Redirect the profile-file to /path/file.<1..nproc>
DR_HOOK_PROFILE=/path/file

Restrict output to MPL-task MYPROC=1
DR_HOOK_PROFILE_PROC=1

Collect HPM (Mflop/s & MIPS) information
DR_HOOK_OPT=hpmprof or mflops

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

13

Dr.Hook environment variables (cont’d)

Collect CPU-profile information
DR_HOOK_OPT=cpuprof

Print profiling information from routines that consume
(self) at least (say) 0.5% of the total time

DR_HOOK_PROFILE_LIMIT=0.5

Collect memory and CPU-time information
DR_HOOK_OPT=“memory,cputime”

Collect wall-clock time, heap & stack
DR_HOOK_OPT=“wall heap stack”

Create memory profile & wall clock profile separately
DR_HOOK_OPT=“wallprof,memprof”

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

14

Dr.Hook environment variables (cont’d)

Catch also Unix-signal number 1 (=SIGHUP)
DR_HOOK_CATCH_SIGNALS=1

Ignore Unix-signal 8 (=SIGFPE) from Dr.Hook
DR_HOOK_IGNORE_SIGNALS=8

Instead of including just the instrumented
subroutine name as an entry in the profile, all calling
trees of that routine (up to certain depth; def.=50)
can be included as distinct callpath entries in profile:

DR_HOOK_OPT=“wallprof,callpath”
DR_HOOK_CALLPATH_DEPTH=5
Use sparingly currently lots of overhead

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

15

How to get an instantaneous calling tree ?

INTEGER(4) :: IOUNIT, ITID, IOPT, INDENT
INTEGER(4),EXTERNAL :: GET_THREAD_ID

IOUNIT = 0 ! Fortran I/O-unit , say stderr
ITID = GET_THREAD_ID() ! 1 .. numthreads
IOPT = 2
INDENT = 0 ! Modified during the call

CALL C_DRHOOK_PRINT(IOUNIT, ITID, IOPT, INDENT)

! After this the variable INDENT equals to no. of routines
seen in the traceback

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

16

Activating Dr.Hook system signal handler only

You should enforce catching of Unix signals, even if
DR_HOOK has not been set to 1

It is highly recommended to have the following call

CALL C_DRHOOK_INIT_SIGNALS(1)

after MPI-initialization

Although this may not provide you Dr.Hook’s own call-trace
upon abnormal exit (i.e. you had DR_HOOK=0), it would still
try to produce the system specific traceback – this is
often better than nothing

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

17

An example of Dr.Hook watch point

USE yomhook, ONLY : LHOOK, DR_HOOK

USE yomwatch

IMPLICIT NONE

REAL(8) :: ZHOOK

INTEGER B(1), ARRAY(100)

COMMON /AREA/ B,ARRAY

ARRAY(1:100) = 1

CALL DR_HOOK_WATCH (‘ARRAY’,ARRAY,LDABORT=.TRUE.)

CALL DR_HOOK(‘WATCH_SECTION’,0,ZHOOK)

B(1:10) = 0 ! Bang!! Overwrites the 9 first elements of ARRAY, too

! Next Dr.Hook call inline detects the overwrite and aborts

CALL DR_HOOK(‘WATCH_SECTION’,1,ZHOOK)

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

18

Dr.Hook availability

With Mflop/s (HPM-)monitor
IBM Power4 (by John Hague/Bob Walkup)
Cray X1 (by Bob Carruthers)

Other platforms (without HPM) i.e. tried on these :
IBM Power3
Linux (Pentium & AMD Opteron)
SGI/MIPS
Fujitsu VPP5000

Portable to virtually any Unix-platform

Dr
.
H
oo

k
 -

an
 in

st
ru

m
en

ta
ti
on

to

ol

19

Conclusion

Dr.Hook has become an invaluable tool for ECMWF to
Detect programming errors
Find out performance statistics and especially Mflop/s
Chase memory leaks and memory overwrites

ECMWF operational & research IFS forecasting and
4DVAR environments have DR_HOOK set to 1 all the time
despite minor overheads, since

Upon failure we at least normally get a very accurate
traceback, and a hunch on what might have gone wrong

Dr.Hook will also help us in computer benchmarking, since
we can now reliably compare performance profiles
information between different vendors

	Dr.Hook – an instrumentation tool
	What is Dr.Hook ?
	What is Dr.Hook ? (cont’d)
	What is Dr.Hook ? (cont’d)
	Motivation of having Dr.Hook
	Dr.Hook traceback
	How to instrument a Fortran90 program ?
	How to instrument a C-program ?
	Dr.Hook profiling information
	Dr.Hook profiling information (cont’d)
	Status of Dr.Hook with IFS (now CY29R2)
	Dr.Hook environment variables
	Dr.Hook environment variables (cont’d)
	Dr.Hook environment variables (cont’d)
	How to get an instantaneous calling tree ?
	Activating Dr.Hook system signal handler only
	An example of Dr.Hook watch point
	Dr.Hook availability
	Conclusion

