SPONSORED BY THE

Federal Ministry of Education and Research

Atmosphärenchemie im Erdsystem – AerChemMIP mit EMAC

Knowledge for Tomorrow

CMIP6 Jahrestreffen

11. Oktober 2017, DKRZ Hamburg

Markus Kunze, Phoebe Graf, Patrick Jöckel German Aerospace Center (DLR), Oberpfaffenhofen

CMIP6 AerChem MIP model requirements

• AGCM / AOGCM → atmosphere or atmosphere/ocean GCM

- AER → models should at least calculate tropospheric aerosols driven by emission fluxes.
- **CHEM^T** \rightarrow at least tropospheric chemistry is required
- **CHEM^s** \rightarrow at least stratospheric chemistry is required.
- Models should always be run with the maximum complexity available.

EMAC (ECHAM MESSy Atmospheric Chemistry) v2.53

(Jöckel et al., 2016)

Configuration: T42L47MA AOGCM – EMAC-MPIOM CHEM^T, CHEM^{S,}, AER – EMAC/EMAC-MPIOM with

- MECCA (gas phase)
- GMXE (aerosol)
- SCAV (aqueous phase)

(Pozzer et al., 2011)

(Sander et al., 2011) (Pringle et al., 2010) (Tost et al., 2006)

Solar forcing for CMIP6 (Matthes et al., 2017)

Total solar irradiances and spectral solar irradiances:

- CMIP6 TSI/SSI dataset created as a combination of NRLSSI2 and SATIRE. Energetic particle precipitation (EPP):
- EPP as Ap and Kp indices available from 1850 2300
- Ap is used in the upper boundary condition for NO_x (UBCNOX submodel) (Funke et al., 2016).

Scientific questions in AerChem MIP (Collins et al. 2017)

- (1) How have anthropogenic emissions contributed to global radiative forcing (RF) and affected regional climate over the historical period?
- (2) How might future policies (on climate, air quality and land use) affect the abundances of NTCFs (near term climate forcers) and their climate impacts?
- (3) How do uncertainties in historical NTCF-emissions affect RF estimates?

Simulations (only Tier 1):

```
hist-piNTCF: (1850 – 2014, 3 ensemble members) → (1)
hist-1950HC (1950 – 2014, 3 ensemble members)
histSST, histSST-piNTCF, histSST-piCH4, histSST-1950HC
```

ssp370, ssp370-lowNTCF (2015 – 2055, 3 ens. mem.) → (2) ssp370SST, ssp370SST-lowNTCF (2015 – 2055)

```
piClim-control, piClim-NTCF, piClim-CH4, piClim-HC \rightarrow (1, 3)
(30 years time slices, fixed SSTs)
```

Preparation of DECK and historical simulations

Requirement for CMIP6 AerChem MIP participation

- I. DECK (Diagnosis, Evaluation, and Characterization of Klima)
- 1. AMIP simulation (prescribed SSTs/SICs ~1979 2014
- 2. Pre-industrial control simulation (1850 conditions, time slice 500 years)
- 3. 1%/yr CO_2 increase
- 4. 4xCO₂ abrupt increase
- (150 years) (150 years)
- II. CMIP6 historical simulation with CMIP6 forcing (1850 2014)

First step: pre-industrial equilibrium state

 With CMIP6 solar forcing (Matthes et al., 2017) TSI is lower: 1361±0.5 W m⁻² (Kopp and Lean, 2011) compared to 1365 W m⁻² (Lean et al., 2005) solar forcing of CMIP5.

piControl - Preparation: 2 m temperature

- Target value: 13.7± 0.2 °C
- Current value: 14.0± 0.2 °C, insignificant, slightly positive trend 0.004°C/century

piControl - Preparation: radiation balance TOA

- Target value: 0.5± 1.0 W m-2
- Current value: 1.2± 0.5 W m-2, insignificant, slightly negative trend 0.005 W m-2/century

piControl - Preparation: total cloud cover

- Target value: > 60%
- Current value: $61.3 \pm 0.30\%$, no trend detectable

Preparation of DECK simulation: AMIP

PCMDI-AMIP-1.1.2 (20 April 2017; Data coverage 1870-1-1 to 2016-12-31) Two versions of SSTs/SICs:

- observations (Hurrell et al., 2008)
- boundary conditions (BCS) (method as described in Taylor et al., 2000)

Original horizontal resolution: 1°x1°

- Preparation for usage in EMAC:
 - Regrid to T42 and adapt to T42 land-sea mask
- Test runs with prescribed SSTs/SICs:
 - check the resultant SSTs/SICs
 - ➤ Is the AMIP-II climatology reproduced?

Boundary conditions AMIP-II SICs, January (1980 – 1992)

Questions: Do the regridded boundary conditions reproduce the AMIP-II climatology?

Test of prescribed AMIP-II SICs, January (1980 – 1992)

• EMAC output reproduces the AMIP-II climatology

Status

- AerChem MIP simulations
- Preparation of DECK simulations
- CMIP6 data request
- CMIP6 forcings, emissions, etc.

Next steps

DECK simulations:

- start piControl (500 yrs) and amip
- start 1pctCO2 and abrupt-4xCO2 (need to be started from piControl)

CMIP6 historical simulation

Start historical from piControl

AerChem MIP simulations

Start hist-piNTCF from piControl

start simulations with prescribed SSTs/SICs: piClim-control, piClimNTCF, piClim-CH4, piClimHC

- not yet started.
- work in progress.
- nearly finished
- finished for historic period